4 research outputs found

    Speeding up Simplification of Polygonal Curves using Nested Approximations

    Full text link
    We develop a multiresolution approach to the problem of polygonal curve approximation. We show theoretically and experimentally that, if the simplification algorithm A used between any two successive levels of resolution satisfies some conditions, the multiresolution algorithm MR will have a complexity lower than the complexity of A. In particular, we show that if A has a O(N2/K) complexity (the complexity of a reduced search dynamic solution approach), where N and K are respectively the initial and the final number of segments, the complexity of MR is in O(N).We experimentally compare the outcomes of MR with those of the optimal "full search" dynamic programming solution and of classical merge and split approaches. The experimental evaluations confirm the theoretical derivations and show that the proposed approach evaluated on 2D coastal maps either shows a lower complexity or provides polygonal approximations closer to the initial curves.Comment: 12 pages + figure

    Fluid shock wave generation at solid-material discontinuity surfaces in porous media

    No full text
    A general set of boundary conditions at the interface between dissimilar fuid-filled porous matrices is established starting from an extended Hamilton-Rayleigh principle. These conditions do include inertial effects. Once linearized, they encompass boundary conditions relative to volume Darcy-Brinkman and to surface Saffman-Beavers-Joseph-Deresiewicz dissipation effects
    corecore